Electrochemical Impedance Spectroscopy

May 2022

ZIVE LAB

Designing the Solutions for Electrochemistry

Potentiostat/Galvanostat] Battery test system | Impedance Analyser | Fuel cell test system T. +82-2-578-6516 F. 82-2-576-2635 email: sales@wonatech.com wonatech.com | zivelab.com | electrochemistry.co.kr | grins.com

Nomenclature : EIS

- Electrochemical?
 - In electrochemistry, everything of interest takes place at the interface between electrode & electrolyte!
 - Controlling REDOX by Potentiostat/galvanostat

• Impedance?

- AC circuit theory describes the response of a circuit to an alternating current or voltage as a function of frequency
- Impedance is a totally complex resistance encountered when a current flows through a circuit made of resistors, capacitors, or inductors, or any combination of these
- Ohm's Law, $V = R \cdot I \rightarrow V = Z \cdot I$ (complex number Z)

• Spectroscopy?

- No Quantum Process
- Small Perturbation \rightarrow Response

Excitations used in E'chem Techniques

Electrochemical Interface and Electrochemical Process

Electrochemical Interface

- *Everything* happens at the interface
- Charge Transfer \Rightarrow R_{ct}
 - R_{ct}~ 1/ i_o
 - Butler-Volmer Equation
- Diffusion Layer \Rightarrow W
- Bulk Electrolyte \Rightarrow R_{ser}, R_{Ω}
- Double Layer \Rightarrow C_{dl}
 - Non-Faradaic Process

Randles' Circuit

Process of Energy Storage in Electrochemical System

Impedance Spectra of a Li-ion battery

ZIVE LAB

Circuit Elements (1)

ZIVE LAB

Basic Circuit Elements

Resistor		$I(t) = I_0 e^{j\omega t}$	
	E = RI	$\rightarrow E = Z \times I$	Z = R
Inductor	dI	$I(t) = I_0 e^{j\omega t}$	
-000-	$E = L \frac{dI}{dt}$	$\rightarrow E = Z \times I$	$Z = j \alpha L$
Capacitor	016	$I(t) = I_0 e^{j\omega t}$	1 . 1
	$E = \frac{Q}{C} = \frac{1}{C} \int Id$	$I(t) = I_0 e^{j\omega t}$ $dt \rightarrow Z$ $E = Z \times I$	$= \frac{-j}{j\omega C} = -j\frac{-j}{\omega C}$

AC Current, Voltage, and Impedance

Voltage $E(\omega) = E_o \cos(\omega t)$ $=E_{o}e^{j\omega t}$, where $j=\sqrt{-1}$ & $\omega=2\pi f$ $I(\omega) = I_{\alpha} \cos(\omega t - \varphi)$ Current $=I_{o}e^{j(\omega t-\varphi)}$ Impedance $Z(\omega) = \frac{E(\omega)}{I(\omega)} \leftarrow \text{Ohm's Law}$ $= Z_{o}(\omega)e^{j\varphi(\omega)}$, where $Z_{o} = E_{o}/I_{o}$ $= Z_{o}(\cos \varphi + j \sin \varphi) \rightarrow Modulus \& Phase$ (Bode Plot) =Z'+jZ'' \rightarrow Real & Imaginary part (**Nyquist Plot**)

Presentation of Impedance Spectrum

- Nyquist Plot
 - Vectors of length |Z|
 - Individual charge transfer processes are resolvable.
 - Frequency is not shown.
 - Small Z can be hidden by large Z.

Bode Plot

- C may be determined graphically.
- Small Zs in presence of large Zs are usually easy to identify.

Basic Circuit Elements

Combinations of Elements

Serial Combination
 Parallel Combination

Combinations of Circuit Elements

ZIVE LAB

R_s-R|C

$$-\underbrace{\bigwedge}_{\mathbf{R}s} \underbrace{C}_{\mathbf{R}s} = R_{s} + \frac{1}{\frac{1}{R} + j\omega C} = \begin{bmatrix} Rs + \frac{R}{1 + \omega^{2}R^{2}C^{2}} \end{bmatrix} - j \begin{bmatrix} \frac{R \times \omega RC}{1 + \omega^{2}R^{2}C^{2}} \end{bmatrix}$$
$$\equiv Z' + jZ''$$

1.
$$\omega \to 0$$
, $Z = R_s + R$
2. $\omega \to \infty$, $Z = R_s$

3.
$$Z' = R_s + \frac{R}{1 + \omega^2 R^2 C^2}, \quad Z'' = -\frac{R \times \omega RC}{1 + \omega^2 R^2 C^2} \qquad \therefore \left\{ Z' - (R_s + \frac{R}{2}) \right\}^2 + Z''^2 = \left(\frac{R}{2}\right)^2$$

4. $Z' = R_s + \frac{R}{2} \implies \frac{R \times \omega_{\max} RC}{1 + \omega_{\max}^2 R^2 C^2} = \frac{R}{2}$
 $\therefore \omega_{\max} = \frac{1}{RC} \implies -Z'' = -Z''_{\max}, \quad \text{phase} \varphi = \varphi_{\min}$

$R_s-R|C$

Coating Capacitance

Ideal Coating

• Imperfect Coating

Uniqueness of Models

- There is not a unique equivalent circuit that describes a spectrum.
- Measuring Z is simple and easy, but analyzing it is difficult.
- Physically relevant model is important.
 - It can be tested by altering physical parameters.
- Be cautious in handling empirical models even if you get a good looking fit.
 - Use the fewest elements
 - Test it by T-test

Disadvantages of EIS

- Ambiguities in interpretation
 - All cells have intrinsically distributed properties
 - Ideal circuit elements may be inadequate to describe real electrical response
 - Use of distributed elements (e.g. CPE)
- There is not a unique equivalent circuit describes measured impedance spectrum

Advantages of EIS

- Relatively simple electrical measurement
- But analysis of complex material variables: mass transport, rates of chemical reactions, corrosion....
- Predictable aspects of the performance of chemical sensors and fuel cells
- Providing empirical quality control procedure

Circuit Elements and Electrochemical Meanings

- Electrolyte Resistance
 - 3 electrode: between WE and RE
 - 2 electrode: all series R in the cell are measured incld. R of contacts, electrodes, solution, and battery separators
 - Depends on ionic concentration, type of ions,

temperature, and geometry

- Charge Transfer Resistance
 - Echem charge transfer reactions are generally modeled as resistances.
 - When an EIS spectrum is measured on a corrosion cell at E_{corr}, the resistance at low-frequency is identical to the polarization resistance.

For a one step, multi-electron process, $O + ne \leftrightarrows R$ small overpotential is given by

$$\eta = \frac{RT}{nF} \left[\frac{C_{o}(0,t)}{C_{o}^{*}} - \frac{C_{R}(0,t)}{C_{R}^{*}} + \frac{i}{i_{o}} \right]$$

$$R_{ct} = \frac{\partial E}{\partial i} \Big|_{C_0(0,t), C_R(0,t)}$$
$$= \frac{RT}{nFi_0}$$

From A. J. Bard & L. R. Faulkner, "Electrochemical Methods"

- Double Layer Capacitance
 - A electrical double layer forms as ions from the solution "stick on" the electrode. There is an Å-wide separation between charge in the electrode and ionic charges in the solution.
 - Charges separated by an insulator form a capacity. On a bare metal, estimate 20 to 40 µF of C for every cm² of electrode area.
 - Depends on electrode potential, temperature, ionic concentrations, types of ions, oxide layers, electrode roughness, impurity adsorption, etc

- Constant Phase Element (CPE)
 - The CPE is basically an imperfect capacitor.
 - It's phase shift is less than 90°.

- Unlike C, a CPE has 2 parameters
 - α is generally between 0.9 and 1.0
 - A is similar to C
- Possible Explanations
 - Surface roughness \rightarrow Fractal Dimension, D=1+1/ α
 - Distribution of reaction rates on a surface
 - Varying thickness or composition of a coating

- Diffusion
 - Diffusion processes can create an impedance, which is small at high frequency and increases as frequency decreases.
 - Warburg Impedance
 - Warburg looks like a special CPE with A=1/s and α =1/2.
 - However, remember that Warburg is derived from electrochemical kinetics. Parameters you obtain with Warburg have physical meanings. It is only partly true for CPE.
 - You can get a good fit, but how to interpret the resulting parameters?

For a one-step, multi-electron process

$$Z_{W} = \frac{\sigma}{\sqrt{\omega}} (1-j) = \frac{\sigma}{\sqrt{\omega}} e^{-\frac{\pi}{4}j} = \frac{\sigma}{(j\omega)^{1/2}} \qquad \sigma = \frac{RT}{n^{2}F^{2}A\sqrt{2}} \left(\frac{1}{D_{O}^{1/2}C_{O}^{*}} + \frac{1}{D_{R}^{1/2}C_{R}^{*}}\right)$$

- Diffusion
 - Nernstian & Finite Diffusion Impedance

$$Z = \frac{\sigma}{\sqrt{\omega}} (1 - j) \tanh(\delta \sqrt{\frac{j\omega}{D}})$$

$$Z = \frac{\sigma}{\sqrt{\omega}} (1 - j) \coth(\delta \sqrt{\frac{j\omega}{D}})$$

 Homogeneous reaction (Gerischer)
 Spherical Diffusion

$$Z = \frac{1}{A\sqrt{B+j\omega}}$$
$$Z = \frac{1}{A\sqrt{B+j\omega}}$$

● Diffusion ← Transmission Line Model

Nernstian Impedance: Diffusion by Constant Concentration

 $Z = \frac{\sigma}{\sqrt{\omega}} (1 - j) \tanh(\delta \sqrt{\frac{j\omega}{D}})$ O Element

Finite Diffusion Impedance: Diffusion by Phase Boundary

 $Z = \frac{\sigma}{\sqrt{\omega}} (1 - j) \coth(\delta \sqrt{\frac{j\omega}{D}})$

Nernstian Impedance

Nernstian Impedance

Finite Diffusion Impedance

Finite Diffusion Impedance

Validation of Impedance Data Kramers-Kronig Relation

Validation of Impedance Data

- Ideal impedance data must fulfill:
 - Causality: The output must be exclusively a result of the input
 - Linearity: The response must be a linear fn. of the perturbation
 - Stability: The system must not be changing during measurement
 → a serious problem for corroding systems
 - Finite-Valued: Impedance must be finite value at any frequency
- Kramers-Kronig Relation:
 - Validation Test
 - Low Frequency Extrapolation
 - The integration range includes the frequencies zero and infinity
 - Note pure capacitor cannot be calculated

a.
$$Z'' \rightarrow Z'$$

$$Z'(\omega) = Z'(\infty) + \frac{2}{\pi} \int_{0}^{\infty} \frac{xZ''(x) - \omega Z''(\omega)}{x^2 - \omega^2} dx$$

 $b.Z'\!\rightarrow\!Z''$

$$Z''(\omega) = -\frac{2\omega}{\pi} \int_{0}^{\infty} \frac{Z'(x) - Z'(\omega)}{x^2 - \omega^2} dx$$

ZIVE LAB

Electrochemistry: A Linear System?

- Circuit theory is simplified when the system is "linear".
- Z in a linear system is independent of excitation amplitude. The response of a linear system is always at the excitation frequency (no harmonics are generated).
- Look at a small enough region of a current versus voltage curve and it becomes linear.
- If the excitation is too big, harmonics are generated and EIS modeling does not work.

E'chem: A Stationary System?

- Measuring EIS spectrum takes time (often many hours).
- The sample can change during the time the spectrum is recorded.
- If this happens, modeling results may be wildly inaccurate.
- To shorten the measuring time of impedance spectrum, use FFT EIS method.

Non-Stationary Conditions result in non-stationary spectra !

Validation of Impedance Data Z-HIT

Limitation of K-K Relation

- The integration range includes the frequencies zero and infinity
- [Z] and Phase are measured independently with different accuracy and sensitivity, but in theory, they are correlated with each other.

ZIVE LAB

Z-HIT Approximation $\ln |Z(\omega_0)| \approx \text{const.} + \frac{2}{\pi} \int_{\omega_s}^{\omega_0} \varphi(\omega) d \ln \omega + \gamma \cdot \frac{d\varphi(\omega_0)}{d \ln \omega}$

Local relationship between impedance and phase => Not affected by the limited bandwidth problem => Reliable detection of artifacts and instationarities (drift)

- => Reconstruction (!!) of causal spectra
- => Reliable interpretation of spectra

Other Methods to Measure EIS

ZIVE LAB

Multi-Sine Wave Method

Others

ZIVE LAB

Inductive Loop at High Frequency

- The effects of inductances are often seen at the high frequencies
- The value of inductor is very small, however, this can be important if the electrode impedance is low.
- Possible Causes
 - Actual physical inductance of loop or coil of wire between electrode and potentiostat
 - Self inductance of the electrode itself: even a straight piece of rod has some self inductance ~ several nH
 - Some cylinder-type batteries also shows this effect ~ uH
 - Instrumental artifacts, notably capacitance associated with the current measuring resistor, however. potentiostat manufacturers may have already made corrections for this effect

Galvanostatic EIS is Better for Low Z

- Potentiostatic Mode
 - Vac is 1 mV Minimum !
 - $-1 \text{ mV}_{\text{rms}} = 1.414 \text{ A}_{\text{rms}} \text{ X Z}$
 - $Z_{min} = 707 \text{ U}\Omega$
 - These are Absolute Minimum Z Values !
 - Limitation is APPLIED E
 - Measured E is still Accurate!
- Galvanostatic Mode
 - Can Measure Smaller E Values ! ~ Microvolts
 - CMR of electrometer may limit the absolute minimum Z Values! -> 5 u Ω
 - Refer to "Shorted Lead Test"

How to Extract Model Parameters

- Building equivalent circuit model
 - Physically relevant model
 - Each component is postulated to come from a physical process in the EChem cell based on knowledge of the cell's physical characteristics.
 - Empirical model
- Complex Nonlinear Least Square (CNLS) Fitting Algorithm
 - is used to find the model parameters that cause the best agreement between a model's impedance spectrum and a measured spectrum.
 - starts with initial estimates of model parameters.
 - Iterations continue until the goodness of fit exceeds an acceptance criterion, or until the number of iterations reaches a limit.
 - Please check the change of χ^2 after each iteration.
 - Sometimes, CNLS algorithm cannot converge on a useful fit because of
 - An incorrect model
 - Poor estimates for the initial values
 - Noise and *etc*.
 - Don't care if the fit looks poor over a small section of the spectrum.