Electrochemical Impedance Spectroscopy

May 2022
WonATech

$Z I V \in L \wedge B$

Nomenclature : EIS

- Electrochemical?
- In electrochemistry, everything of interest takes place at the interface between electrode \& electrolyte!
- Controlling REDOX by Potentiostat/galvanostat
- Impedance?
- AC circuit theory describes the response of a circuit to an alternating current or voltage as a function of frequency
- Impedance is a totally complex resistance encountered when a current flows through a circuit made of resistors, capacitors, or inductors, or any combination of these
- Ohm's Law, V = R •I $\rightarrow \mathrm{V}=\mathrm{Z} \cdot \mathrm{I}$ (complex number Z)
- Spectroscopy?
- No Quantum Process
- Small Perturbation \rightarrow Response

Excitations used in E'chem Techniques

1. DC

CA, CC, CP
Potentiostatic
2. Sweep
LSV, Tafel, PD, LPR

3. Pulse
4. Sine

Electrochemical Interface and Electrochemical Process

Electrochemical Interface

- Everything happens at the interface
- Charge Transfer $\Rightarrow R_{c t}$
- $\mathrm{R}_{\mathrm{ct}} \sim 1 / \mathrm{i}_{0}$
- Butler-Volmer Equation
- Diffusion Layer $\Rightarrow \mathrm{W}$
- Bulk Electrolyte $\Rightarrow R_{\text {serr }} R_{\Omega}$
- Double Layer $\Rightarrow C_{\text {dl }}$
- Non-Faradaic Process

Randles' Circuit

Process of Energy Storage in Electrochemical System

Common Steps

- Ionic charge conduction through electrolyte in pores of active layer
- Electronic charge conduction through conductive part of active layer
- Electrochemical reaction on the interface of active material particles including electron transfer
- Diffusion of ions or neutral species into or out of electrochemical reaction zone.

Impedance Spectra of a Li-ion battery

Impedance Spectra upon cycling

Nyquist Plot vs. level of discharge

CF)Discharge curve upon cycling

Effect of temperature

Circuit Elements (1)

Basic Circuit Elements

Resistor	$I(t)=I_{0} e^{i \omega x}$		
-W-	$E=R I$	$\overrightarrow{E=Z \times I}$	$Z=R$
Inductor		$I(t)=I_{0}{ }^{i e^{\prime \prime}}$	
\cdots	$E=L \frac{d I}{d t}$	$\overrightarrow{E=Z \times I}$	$Z=j a L$
Capacitor	$=\frac{Q}{C}=\frac{1}{C} \int$	$\begin{aligned} & I(t)=I_{0} e^{i e x} \\ & t \underbrace{}_{E=Z \times I} \\ & = \end{aligned}$	$=\frac{1}{j \omega C}=$

AC Current, Voltage, and Impedance

Voltage $\quad E(\omega)=E_{o} \cos (\omega t)$

$$
=E_{o} e^{j \omega t} \quad, \text { where } j=\sqrt{-1} \& \omega=2 \pi f
$$

Current $\quad I(\omega)=I_{o} \cos (\omega t-\varphi)$

$$
=I_{o} e^{j(\omega \theta-\varphi)}
$$

Impedance $\quad Z(\omega)=\frac{E(\omega)}{I(\omega)} \quad \leftarrow$ Ohm's Law

$$
\begin{aligned}
& =Z_{o}(\omega) e^{j \varphi(\omega)} \quad, \text { where } Z_{o}=E_{o} / I_{o} \\
& =Z_{o}(\cos \varphi+j \sin \varphi) \rightarrow \text { Modulus \& Phase }
\end{aligned}
$$

$$
=Z^{\prime}+j Z^{\prime \prime}
$$

(Bode Plot)
\rightarrow Real \& Imaginary part (Nyquist Plot)

Presentation of Impedance Spectrum

- Nyquist Plot
- Vectors of length |Z|
- Individual charge transfer processes are resolvable.
- Frequency is not shown.
- Small Z can be hidden by large Z.

- Bode Plot
- C may be determined graphically.
- Small Zs in presence of large Zs are usually easy to identify.

Basic Circuit Elements

Combinations of Elements

- Serial Combination
- Parallel Combination

$$
Z=Z_{1}+Z_{2}
$$

$$
\frac{1}{Z}=\frac{1}{Z_{1}}+\frac{1}{Z_{2}}
$$

Combinations of Circuit Elements

R-C

$$
\longrightarrow W H \quad \rightarrow \quad Z=R+\frac{1}{j \omega C}
$$

$\mathrm{R}_{5}-\mathrm{R} \mid \mathrm{C}$

1. $\omega \rightarrow 0, Z=R_{s}+R$
2. $\omega \rightarrow \infty, Z=R_{s}$
3. $Z=R_{S}+\frac{R}{1+\omega^{2} R^{2} C^{2}}, \quad Z^{\prime \prime}=-\frac{R \times \omega R C}{1+\omega^{2} R^{2} C^{2}} \quad \therefore\left\{Z-\left(R_{S}+\frac{R}{2}\right)\right\}^{2}+Z^{\prime 2}=\left(\frac{R}{2}\right)^{2}$
4. $Z=R_{s}+\frac{R}{2} \Rightarrow \frac{R \times \omega_{\max } R C}{1+\omega_{\max }^{2} R^{2} C^{2}}=\frac{R}{2}$
$\therefore \omega_{\max }=\frac{1}{R C} \Rightarrow-Z^{\prime \prime}=-Z^{\prime \prime}{ }_{\text {max }}, \quad \operatorname{phase} \varphi=\varphi_{\text {min }}$

$R_{s}-\mathrm{R} \mid \mathrm{C}$

Phase φ

Coating Capacitance

- Ideal Coating

$C_{\text {coat }}=\varepsilon \frac{A}{d}$
$\mathcal{W H}_{\mathrm{R}} \|_{\mathrm{C}_{\text {oot }}}$
- Imperfect Coating

Uniqueness of Models

- There is not a unique equivalent circuit that describes a spectrum.
- Measuring Z is simple and easy, but analyzing it is difficult.
- Physically relevant model is important.
- It can be tested by altering physical parameters.
- Be cautious in handling empirical models even if you get a good looking fit.
- Use the fewest elements

Same Impedance Spectrum

- Test it by T-test

Disadvantages of EIS

- Ambiguities in interpretation
- All cells have intrinsically distributed properties
- Ideal circuit elements may be inadequate to describe real
electrical response
- Use of distributed elements (e.g. CPE)
- There is not a unique equivalent circuit describes measured impedance spectrum

Advantages of EIS

- Relatively simple electrical measurement
- But analysis of complex material variables: mass transport, rates of chemical reactions, corrosion....
- Predictable aspects of the performance of chemical sensors and fuel cells
- Providing empirical quality control procedure

Circuit Elements and Electrochemical Meanings

Physical Electrochemistry
 \& Equivalent Circuit Elements

- Electrolyte Resistance
- 3 electrode: between WE and RE
- 2 electrode: all series R in the cell are measured incld. R of contacts, electrodes, solution, and battery separators
- Depends on ionic concentration, type of ions, temperature, and geometry

Physical Electrochemistry
 \& Equivalent Circuit Elements

- Charge Transfer Resistance
- Echem charge transfer reactions are generally modeled as resistances.
- When an EIS spectrum is measured on a corrosion cell at $\mathrm{E}_{\text {corrr }}$ the resistance at low-frequency is identical to the polarization resistance.

For a one step, multi-electron process, $O+n e \leftrightarrows R$ small overpotential is given by

$$
\eta=\frac{R T}{n F}\left[\frac{C_{O}(0, t)}{C_{o}^{*}}-\frac{C_{R}(0, t)}{C_{R}^{*}}+\frac{i}{i_{o}}\right]
$$

Physical Electrochemistry \& Equivalent Circuit Elements

From A. J. Bard \& L. R. Faulkner, "Electrochemical Methods"

- Double Layer Capacitance
- A electrical double layer forms as ions from the solution "stick on" the electrode. There is an \AA-wide separation between charge in the electrode and ionic charges in the solution.
- Charges separated by an insulator form a capacity. On a bare metal, estimate 20 to $40 \mu \mathrm{~F}$ of C for every cm^{2} of electrode area.
- Depends on electrode potential, temperature, ionic concentrations, types of ions, oxide layers, electrode roughness, impurity adsorption, etc

Physical Electrochemistry \& Equivalent Circuit Elements

- Constant Phase Element (CPE)
- The CPE is basically an imperfect capacitor.
- It's phase shift is less than 90°.

$$
Z_{C P E}=\frac{1}{A \times(j \omega)^{\alpha}}
$$

- Unlike C, a CPE has 2 parameters
- α is generally between 0.9 and 1.0
- A is similar to C
- Possible Explanations
- Surface roughness \rightarrow Fractal Dimension, $D=1+1 / \alpha$

- Distribution of reaction rates on a surface
- Varying thickness or composition of a coating

Physical Electrochemistry
 \& Equivalent Circuit Elements

- Diffusion
- Diffusion processes can create an impedance, which is small at high frequency and increases as frequency decreases.
- Warburg Impedance
- Warburg looks like a special CPE with $A=1 / s$ and $\alpha=1 / 2$.
- However, remember that Warburg is derived from electrochemical kinetics. Parameters you obtain with Warburg have physical meanings. It is only partly true for CPE.
- You can get a good fit, but how to interpret the resulting parameters?

For a one-step, multi-electron process
$Z_{W}=\frac{\sigma}{\sqrt{\omega}}(1-j)=\frac{\sigma}{\sqrt{\omega}} e^{-\frac{\pi}{4} j}=\frac{\sigma}{(j \omega)^{1 / 2}} \quad \sigma=\frac{R T}{n^{2} F^{2} A \sqrt{2}}\left(\frac{1}{D_{O}^{1 / 2} C_{O}^{* *}}+\frac{1}{D_{R}^{1 / 2} C_{R}^{*}}\right)$

Physical Electrochemistry

\& Equivalent Circuit Elements

- Diffusion
- Nernstian \& Finite Diffusion Impedance

$$
Z=\frac{\sigma}{\sqrt{\omega}}(1-j) \tanh (\delta \sqrt{j \omega / D}) \quad Z=\frac{\sigma}{\sqrt{\omega}}(1-j) \operatorname{coth}(\delta \sqrt{j \omega / D})
$$

- Homogeneous reaction (Gerischer) $\quad Z=\frac{1}{A \sqrt{B+j \omega}}$
- Spherical Diffusion

$$
Z=\frac{1}{A} \frac{1}{\sqrt{B}+\sqrt{j \omega}}
$$

Physical Electrochemistry

\& Equivalent Circuit Elements

- Diffusion \leftarrow Transmission Line Model

Warburg

Nernstian Impedance: Diffusion by Constant Concentration

$$
Z=\frac{\sigma}{\sqrt{\omega}}(1-j) \tanh (\delta \sqrt{j \omega / D})
$$

Finite Diffusion Impedance: Diffusion by Phase Boundary

$$
Z=\frac{\sigma}{\sqrt{\omega}}(1-j) \operatorname{coth}(\delta \sqrt{j \omega / D})
$$

คM
 $\mathrm{R}: 100 \Omega$
 C: 0.001F
 Nernstian Impedance

R

 C: 0.001F
 Nernstian Impedance

 Finite Diffusion Impedance

 Finite Diffusion Impedance

Validation of Impedance Data Kramers-Kronig Relation

Validation of Impedance Data

- Ideal impedance data must fulfill:
- Causality: The output must be exclusively a result of the input
- Linearity: The response must be a linear fn. of the perturbation
- Stability: The system must not be changing during measurement
\rightarrow a serious problem for corroding systems
- Finite-Valued: Impedance must be finite value at any frequency
- Kramers-Kronig Relation:
- Validation Test
- Low Frequency Extrapolation

$$
\text { a. } \mathrm{Z}^{\prime \prime} \rightarrow \mathrm{Z}^{\prime}
$$

$$
Z^{\prime}(\omega)=Z^{\prime}(\infty)+\frac{2}{\pi} \int_{0}^{\infty} \frac{x Z^{\prime \prime}(x)-\omega Z^{\prime \prime}(\omega)}{x^{2}-\omega^{2}} d x
$$

- The integration range includes the frequencies zero and infinity
- Note pure capacitor cannot be calculated
b. $Z^{\prime} \rightarrow Z^{\prime \prime}$

$$
Z^{\prime \prime}(\omega)=-\frac{2 \omega^{\infty}}{\pi} \int_{0}^{\infty} \frac{Z^{\prime}(x)-Z^{\prime}(\omega)}{x^{2}-\omega^{2}} d x
$$

Electrochemistry: A Linear System?

- Circuit theory is simplified when the system is "linear".
- Z in a linear system is independent of excitation amplitude. The response of a linear system is always at the excitation frequency (no harmonics are generated).
- Look at a small enough region of a current versus voltage curve and it becomes linear.
- If the excitation is too big, harmonics are generated and EIS modeling does not work.

E'chem: A Stationary System?

- Measuring EIS spectrum takes time (often many hours).
- The sample can change during the time the spectrum is recorded.
- If this happens, modeling results may be wildly inaccurate.
- To shorten the measuring time of impedance spectrum, use FFT EIS method.

Non-Stationary Conditions result in non-stationary spectra!

Validation of Impedance Data Z-HIT

Limitation of K-K Relation

- The integration range includes the frequencies zero and infinity
- |Z| and Phase are measured independently with different accuracy and sensitivity, but in theory, they are correlated with each other.

Z-HIT Approximation

$$
\ln \left|Z\left(\omega_{0}\right)\right| \approx \text { const. }+\frac{2}{\pi} \int_{\omega_{s}}^{\omega_{0}} \varphi(\omega) d \ln \omega+\gamma \cdot \frac{d \varphi\left(\omega_{o}\right)}{d \ln \omega}
$$

Local relationship between impedance and phase
=> Not affected by the limited bandwidth problem
=> Reliable detection of artifacts and instationarities (drift)
=> Reconstruction (!!) of causal spectra
=> Reliable interpretation of spectra

Other Methods to Measure EIS

Multi-Sine Wave Method

Others

Inductive Loop at High Frequency

- The effects of inductances are often seen at the high frequencies
- The value of inductor is very small, however, this can be important if the electrode impedance is low.
- Possible Causes

- Actual physical inductance of loop or coil of wire between electrode and potentiostat
- Self inductance of the electrode itself: even a straight piece of rod has some self inductance ~ several nH
- Some cylinder-type batteries also shows this effect ~ uH
- Instrumental artifacts, notably capacitance associated with the current measuring resistor, however. potentiostat manufacturers may have already made corrections for this effect

Galvanostatic EIS is Better for Low Z

- Potentiostatic Mode
- Vac is 1 mV Minimum !
$-1 \mathrm{mV}_{\mathrm{rms}}=1.414 \mathrm{~A}_{\mathrm{rms}} \times Z$
$-Z_{\text {min }}=707 \cup \Omega$
- These are Absolute Minimum Z Values!
- Limitation is APPLIED E
- Measured E is still Accurate!
- Galvanostatic Mode
- Can Measure Smaller E Values !~Microvolts
- CMR of electrometer may limit the absolute minimum Z Values! -> 5 U Ω
- Refer to "Shorted Lead Test"

How to Extract Model Parameters

- Building equivalent circuit model
- Physically relevant model
- Each component is postulated to come from a physical process in the EChem cell based on knowledge of the cell's physical characteristics.
- Empirical model
- Complex Nonlinear Least Square (CNLS) Fitting Algorithm
- is used to find the model parameters that cause the best agreement between a model's impedance spectrum and a measured spectrum.
- starts with initial estimates of model parameters.
- Iterations continue until the goodness of fit exceeds an acceptance criterion, or until the number of iterations reaches a limit.
- Please check the change of χ^{2} after each iteration.
- Sometimes, CNLS algorithm cannot converge on a useful fit because of
- An incorrect model
- Poor estimates for the initial values
- Noise and etc.
- Don't care if the fit looks poor over a small section of the spectrum.

